当前位置: > 专业技术 >

专业技术

《IPTV VR技术产业白皮书 》(2017年)(21)

发布时间:2018-01-03 文章来源:众视DVBCN
 
    正在发展有望满足要求的无线技术有:
 
    WiGig( 802.11ad ),是一种无线千兆比特网络通用标准, 工作于60Ghz频段,支持近距离高达7Gbps的传输速率,满足2K VR的要求。WiGig技术已被英特尔及其无线 VR 方案提供商 DisplayLink 所采用。2017年E3,英特尔展示的WiGig无线方案延迟为7ms。
 
    WirelessHD,是较早的一种专有标准,专用于短距离传输高清视频。WirelessHD 1.1版本采用了60Ghz频段,最高传输速率可达28Gbps。
 
    WirelessHD的解决方案需要一个接收器和一个发射器,其延时在5-15ms之间。TPCAST技术,是WirelessHD的一项应用,已经在HTC Vivo上实现,体验效果在2K VR水平,和有线传输区别不明显,但是成本非常高。
 
    此外,Li-Fi 可见光通讯技术,可以达到50Gbps的传输速率,当前还处于实验室阶段,也是未来可能的选项之一。
 
    4.6IPTV VR HMD技术要求
 
    HMD良好的沉浸体验需要从人眼视觉特性着手,提供与人眼类似的视场角、良好的显示效果(足够的分辨率和色彩还原性能),并满足人眼立体视觉、聚焦凝视、视觉融合等特性。目前技术可用成熟以光学屏幕技术为主,除了大视场角、高分辨率以外,解决会聚与聚焦的不匹配是提升HMD体验的主要难点,新型的甚至结合眼动跟踪功能的多焦面显示、视网膜投影、光场显示技术正在蓬勃发展。
光学屏幕的HMD对屏幕的要求是高分辨率、高刷新率和小体积。理想的近眼显示屏幕分辨率应该达到16K,刷新率达到1KHz,以及1寸或以下体积。目前的屏幕技术尚待进一步提升。当前显示效果较好的OLED近眼显示屏幕,单眼分辨率在1K左右,刷新率达到90Hz,国际上主流厂商如Sony、VIVE和Oculus都在产品中使用OLED屏幕。随着LCD技术的发展,可以通过Fast LCD技术提升屏幕响应时间显著改善的产品。由于FastLCD屏幕在成本、产能上有显著优势,预计在将来的两到三年中成为主流,广泛的使用。将来,近眼显示屏幕需要的分辨率会进一步提升而尺寸进一步减小,现有的LCD和OLED技术都面临接近工艺单位尺寸分辨率的极限,能支持更小尺寸、更高分辨率的硅基OLED技术是一个值得期待的发展方向,随着这一类产品技术的成熟和价格的下降,在今后三到五年年中,硅基OLED有可能成为近眼显示的主流屏幕。
 
    良好的光学设计对于HMD至关重要,它有助于确定可获取的视场和整体图像清晰度。在HMD早期,简单的球面或者光滑非球面镜片由于设计简单、成本低成为了头显的主流选择。有代表性的产品包括Oculus DK2, 三星GearVR,以及Google的CardBoard等。随着VR的普及,用户对视场角大小和屏幕像素晶格感方面的有了进一步的要求,菲涅尔透镜由于具备短焦距和光学扩散的特点,成为新一代HMD的主流光学方案。当HMD的尺寸、重量进一步下降,屏幕的分辨率进一步提高,现有的菲涅尔透镜在尺寸、成像清晰度方面遇到挑战,而新型的菲涅尔结合非球面多透镜光学方案将会出现。
 
    在数据接口方面,头显的HDMI接口应不低于HDMI 1.4. 对于分辨率/刷新率综合指标高于2560x1440@70Hz的头显,其HDMI接口需要支持HDMI 2.0标准(或支持DP 1.3以上)。最新的HDMI2.1接口支持8K@60Hz的48Gbsp的传输速率,而2016年推出的DP1.4最高支持32Gbps的传输速率,如果使用90Hz屏幕,所能单眼分辨率极限约为4K。 如果需要支持16K@1kHz的屏幕,HDMI和DisplayPort等标准仍然需要多年的演进。在HMD的交互方面,USB3.0接口可以满足现有传感信息和inside-out摄像头数据的基本需求。交互的形式从HMD的按键,3Dof手柄,6Dof头盔/手柄组合都会得到相应的应用。实现的成本从简单按键到复杂的6Dof设备逐渐上升,而交互的体验也是逐渐上升的。

〖 浏览次数: